This article was downloaded by:

On: 27 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

The Synthesis of Some New Quinazolone Derivatives of Potential Biological Activity

A. A. El-Barbary^a; A. Z. Abou El-Ezz^a; A. M. Sharaf^a; C. Nielsen^b

^a Chemistry Department, Tanta University, Tanta, Egypt ^b Retrovirus Laboratory, Department of Virology, State Serum Institute, Copenhagen, Denmark

To cite this Article El-Barbary, A. A., El-Ezz, A. Z. Abou, Sharaf, A. M. and Nielsen, C.(2006) 'The Synthesis of Some New Quinazolone Derivatives of Potential Biological Activity', Phosphorus, Sulfur, and Silicon and the Related Elements, 181: 8, 1895 - 1912

To link to this Article: DOI: 10.1080/10426500500543834 URL: http://dx.doi.org/10.1080/10426500500543834

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phosphorus, Sulfur, and Silicon, 181:1895-1912, 2006

Copyright © Taylor & Francis Group, LLC ISSN: 1042-6507 print / 1563-5325 online

DOI: 10.1080/10426500500543834

The Synthesis of Some New Quinazolone Derivatives of Potential Biological Activity

A. A. El-Barbary

A. Z. Abou El-Ezz

A. M. Sharaf

Chemistry Department, Tanta University, Tanta, Egypt

C. Nielsen

Retrovirus Laboratory, Department of Virology, State Serum Institute, Copenhagen, Denmark

The refluxing of 3-amino-6,8-dibromo-2-thioxo-2,3-dihydro-1H-quinazolin-4-one (5) with ethyl chloroformate and/or ethyl chloroacetate afforded compounds 6 and 7. The reaction of 5 with ethyl bromobutyrate, chloroacetyl chloride, phenacyl chloride, and phenyl isocyanate yielded compounds 8, 9, 11, and 12. The coupling of 5 with (2,3,4,6-tetra-O-acetyl-α-D-gluopyranosyl)bromide(ABG) in DMF at r.t. gave 3-amino-6,8-dibromo-2-(2',3',4',6'-tetra-O-acetyl-β-D-glucopyranosyl)thioxo-2,3-dihydro-1H-quinazolin-4-one (14). The deblocking of 14 in sodium methoxide gave 5. 3-Amino-6,8-dibromo-2-methylthio-3H-quinazolin-4-one (16) was prepared by stirring 5 with methyl iodide in methanol. The treatment of 16 with hydrazine hydrate afforded 4. The condensation of 4 with aldehydes furnished 3,5-dibromo-2-arylaminobenzoic acid hydrazide (18a-c). The refluxing of 18a with acetic anhydride gave 3-(benzylideneamino)-6,8-dibromo-2-methyl-3H-quinazolin-4-one (19). Hydrazones 20a-f were prepared by the condensation of 4 with pentoses and/or hexoses. The acetylation of (20a-f) with acetic anhydride gave the acetyl derivatives 21a-f.

Keywords Aldopentoses and hexoses; aminoquinazolenes; HIV; hydrazides; microbial activity

Received September 5, 2005; accepted October 20, 2005.

The authors are thankful to the Danish International Development Agency (DANIDA) for their support. Thanks are also due to Dr. Ahmed I. Mowaad, Biochemistry Department, Faculty of Agriculture, El-Fayoum, El-Fayoum Branch, Cairo University, Egypt, for testing antimicrobial activity.

Address correspondence to A.A. El-Barbary, Tanta University, Chemistry Department, Faculty of Science, Tanta. Egypt. E-mail: aaelbarbary@hotmail.com

INTRODUCTION

3*H*-quinazolin-4-one and their derivatives have been reported to possess significant activity as antihypertensive, ¹ antifibrillatory, choleretic, antiphlogistic, ² antimitotic anticancer, ³ antifungal, ^{4,5} and anticonvulsant agents. ⁶ Quinazolinones were reported to possess diverse pharmacological activities such as a CNS depressant, ⁷ hypnotic, antiinflamatory, ⁸ antitumor, ⁹ muscle relaxants, ¹⁰ and antineoplastic activity. ¹¹ These results prompted us to continue our earlier work of synthesizing some other new derivatives for evaluating their biological antimicrobial activity as anti–HIV, anti–HBV, and schistosomiasis.

RESULTS AND DISCUSSION

The bromination of 2-aminobenzoic acid (1) with bromine in glacial acetic acid at r.t. gave 2-amino-3,5-dibromobenzoic acid (2), which was esterified by refluxing in a mixture of ethanol and sulfuric acid to afford 3,¹² which, on treatment with hydrazine hydrate in ethanol, furnished 2-amino-3,5-dibromo benzoic acid hydrazide (4).¹³ The cyclization of 4 with carbon disulfide in boiling ethanol afforded the new compound 3-amino-6,8-dibromo-2-thioxo-2,3-dihydro-1*H*-quinazolin-4-one (5) (Scheme 1). A similar structure of 5 was prepared through the reaction of isatoic anhydride with thioamide to afford 2-substituted-4(3H) quinazolinones.¹⁴

The IR spectrum of **5** showed the existence of NH at 2814 cm⁻¹. Its ¹H NMR spectrum showed the presence of a singlet at 6.55 ppm (2H, NH₂) and a broad signal at 14.61 ppm (1H, NH). Its ¹³C NMR spectrum showed the existence of C=N at 158.84 ppm and C=O at 176.08 ppm. The mass spectrum of **5** containing bromine atoms showed fragments corresponding to the typical bromine isotope ⁷⁹Br and ⁸¹Br patterns. Thus, the mass spectrum showed its M⁺¹ and M⁺² peaks at *m/z* 351 (93%, C₈H₅Br₂N₃OS) and 278 (100%, C₇H₄Br₂NO), respectively (Scheme 1).

The fusion of **5** with either ethyl chloroformate or ethyl chloroacetate yielded thiocarbonic acid S-(3-amino-6,8-dibromo-4-oxo-3,4-dihydroquinazolin-2-yl)ester-O-ethyl ester (**6**) and/or (3-amino-6,8-dibromo-4-oxo-3,4-dihydroquinazolin-2-ylsulfanyl)acetic acid ethyl ester (**7**), respectively. The reaction of **5** with ethyl 2-bromobutyrate in sodium ethoxide at r.t. afforded 2-(3-amino-6,8-dibromo-3,4-dihydroquinazolin-2-ylsulfanyl)butyric acid ethyl ester (**8**). The structures of **6–8** were suggested by different spectroscopic data (IR,¹H, ¹³C NMR, and MS). Their IR spectra showed the existence of the C=O (ester) in the range 1735–1765 cm⁻¹. Their ¹H NMR spectra showed

COOH
$$NH_{2} + Br_{2} \xrightarrow{AcOH} Fr.t.$$

$$Br$$

$$NH_{2} + Br_{2} \xrightarrow{AcOH} NH_{2} \xrightarrow{EtOH} Br$$

$$NH_{2} + Br$$

$$NH_{3} + Br$$

SCHEME 1

the appearance of a triplet (3H, CH₃) in the range of 1.20–1.54, and a quartet (2H, CH₂) in the range 4.14–4.65 ppm. The 13 C NMR spectra of compounds **6–8** showed the existence of the C=O (ester) in the range of 145.54–163.66 ppm. The mass spectrum of **7** showed m/z 435 (M⁺, 71 %).

The stirring of **5** with chloroacetyl chloride in dioxane at 25°C or at boiling temperature in the presence of triethylamine yielded 3-amino-6,8-dibromo-4-oxo-3,4-dihydroquinazolin-2-ylsulfanyl)acetyl chloride (9) and not the desired cyclic compound 6,8-dibromo-3,4-dihydro-1-thia-4,4a,9-triazaanthracene-2,10-dione (10). The IR pectrum of 9 showed the (COCH₂Cl) at 1718 cm⁻¹. Its ¹H NMR spectrum showed a singlet at 4.27 ppm (2H, CH₂) and a singlet at 6.89 ppm (2H, NH₂). Its 13 C NMR spectrum showed the existence of a (CH₂) signal at 34.14 ppm; (C_{arom.}) signals at 105.78, 106.65, 109.91, 128.99, 136.96, and 143.18 ppm; a (C=N) signal at 162.55 ppm; a (cyclic, C=O) at 163.36 ppm; and a (COCH₂Cl) at 168.89 ppm. The stirring of 5 with phenacyl chloride at 25°C in anhydrous DMF and anhydrous potassium carbonate afforded 3-amino-6,8-dibromo-2-(2-oxo-2-phenylethylsulfanyl)-3H-quinazol-in-4-one (11). The IR spectrum of 11 showed (COPh) at 1728 cm^{-1} . Its ^{1}H NMR spectrum showed a singlet at 5.35 ppm (2H, CH₂CO), a broad singlet at $6.62 \, (2H, NH_2)$, and a multiplet at $7.65 - 7.82 \, \text{ppm} \, (5H, C_6H_5)$. The 13 C NMR spectrum of 11 showed the CH₂ signal at 40.39 ppm, (C=N) at 162.57 ppm, (C=O, cyclic) at 163.36 ppm, and (COPh) at 192.65 ppm.

The treatment of **5** with phenyl isocyanate in anhydrous pyridine either at r.t. or by reflux yielded 5,7-dibromo-3-phenyl-3*H*-[1,2,4]triazolo[5,1-b]quinazoline-2,9-dione (**12**) as the sole product (TLC) and not the open structure (**13**). The IR spectrum of **12** showed

the C=O at 1598 cm $^{-1}$ and (C=O, cyclic) at 1645 cm $^{-1}$. Its 1 H NMR spectrum showed a multiplet at 6.43–7.04 ppm (5H, H_{arom}), and a singlet (1H, NH) at 11.02 ppm. Its 13 C NMR spectrum showed a C=N at 163.72 ppm and a C=ONH at 171.23 ppm (Scheme 2).

SCHEME 2

The coupling of **5** with $(2,3,4,6\text{-tetra-}O\text{-acetyl-}\alpha\text{-}D\text{-glucopy-ranosyl})$ bromide (**ABG**) in DMF at r.t. yielded 3-amino-6,8-dibromo-2(2',3',4',6'-tetra-O-acetyl- β -D-glucopyranosyl)thioxo-2,3-dihydro-1H-quinazolin-4-one (**14**). Its IR spectrum showed a sharp band at 1748 cm⁻¹ (C-O, acetyl). The ¹H NMR spectrum showed the presence of 4 characteristic signals due to four acetyl groups CH₃CO (s) of the sugar moiety in the range 1.95–2.12 ppm and the anomeric proton in the range 4.95–5.96 ppm. Its ¹³C NMR spectrum showed 4 signals (4 CH₃) in the range 20.14–20.23 and 4 signals (4 C=O, acetyl) in the range 169.21–169.73 ppm. The mass spectrum of compound **14** showed m/z 681 (M $^+$, C₂₂H₂₃Br₂N₃O₁₀S, 75%).

The deblocking of 14 using sodium methoxide at r.t. yielded the starting aglycone¹⁵ and not the desired deblocked compound 6,8-dibromo-2-(3,4,5-trihydroxy-6-hydroxymethyl-tetrahydropyran-2-ylsulfanyl)-3H-quinazolin-4-one (15) (Scheme 3). 3-amino-6,8-dibromo-2-methylthio-3H-quinazolin-4-one (16) can be synthesized by stirring 5 with methyl iodide in methanol at 25° C. The IR spectrum of 16 showed

SCHEME 3

the NH_{2 sym} at 3338 cm⁻¹ and 3453 cm⁻¹ due to (NH_{2 antisym}). Its ¹H NMR spectrum showed the appearance of s, 3H, and CH₃ at 2.80 ppm and s, 2H, and NH₂ at 6.89 ppm. Its ¹³C NMR spectrum showed CH₃ at 14.19 ppm. The mass spectrum of **16** showed m/z at 365 (M⁺, 98%). The refluxing of **16** with hydrazine hydrate in ethanol furnished 2-amino-3,5-dibromobenzoic acid hydrazide (**4**) instead of the expected 3-amino-6,8-dibromo-2-hydrazino-3H-quinazolin-4-one (**17**).

The boiling **4** with some aromatic aldehydes, namely benzaldehyde, 4-methoxybenzaldehyde, and 2-nitrobenzaldehyde in ethanol, afforded the corresponding Schiff bases 3,5-dibromo-2-arylamino benzoic acid hydrazide (**18a–c**) (Scheme 4). IR spectra of compounds **18a–c** showed C=N bands in the range 2849–2928 cm⁻¹, NH in the range 3185–3250 cm⁻¹, and NH₂ in the range 3339–3362 cm⁻¹. ¹H NMR spectra showed a signal (1H, CH) in the range 8.12–8.40 ppm. ¹³C NMR spectra showed C=N signals at 152.13–156.61 ppm. The refluxing of **18a** with acetic anhydride gave 3-(benzylideneamino)-6,8-dibromo-2-methyl-3*H*-quinazolin-4-one (**19**). For the formation of **19**, it is supposed that the acetylation of the NH₂ group of **18a** took place followed by an internal nucleophilic attack and the elimination of H₂O. Its ¹H NMR spectrum showed a CH₃ as a singlet (3H) at 2.45 ppm. Its ¹³C NMR spectrum showed a CH₃ signal at 20.77 ppm.

The sugar hydrazones **20a-f** were prepared by the refluxing of **4** with an equimolar amounts of L-arabinose, D-ribose, D-xylose, D-glucose, D-galactose, and D-mannose in an aqueous ethanolic solution in the presence of a catalytic amount of acetic acid. IR spectra of **20a-f** showed NH band in the range 3188–3210 cm⁻¹ and a broad band of OH in the

Br
$$Archo$$
 $Archo$ A

SCHEME 4

range 3421–3476 cm⁻¹. ¹H NMR spectra of these hydrazones showed signals (1H, CH=N) in the range 7.10–7.79 ppm. The structures of compounds **20a–f** were also confirmed by the ¹³C NMR data. For example, the ¹³C NMR spectrum of **20e** was characterized by the presence of signals at 63.02, 66.02, 68.17, 68.90, and 69.68 ppm (C-6', C-5', C-4', C-3', and C-2') of the galactose moiety and CH=N at 154.86 ppm.

The acetylation of the aldehydo sugar hydrazones (**20a–f**) with acetic anhydride in pyridine at r.t. gave the corresponding per-*O*-acetylaldehydosugar[1-acetyl-1-(N-acetylamino-2-amino-3,5-dibromobenzoyl]hydrazones (**21a–f**) (Scheme 5). IR spectra of **21a–f** showed C=N at 1615–1618 cm⁻¹, a N–C=O (acetyl) at 1695–1699 cm⁻¹, and an O-acetyl at 1751–1756 cm⁻¹. The structures of compounds **21a–f** were further confirmed by ¹H NMR and ¹³C NMR data (see the experimental section).

BIOLOGICAL ACTIVITY

All compounds were tested against HIV-1. The test was performed in MT4 cell cultures infected with wild type HIV-1 (strain IIIB) using the assay as previously described. The compounds were inactive at 100 uM or inactive at subtoxic concentrations. None of the tested compounds showed any significant antiviral activity at 100 μ M against HIV-1.

In addition, the new products were tested as Accaros: Spider mite (*Tetranychus-urticae*), (Koch), fungicides (*Rhizoctonia solani*, *Fusarium oxysporium*, *Fusarium solani*, *Verticillium dahliae*, and *Verticillium*

sulphurellium), and bactericides (*Psedomonas solani- serum*, *Erwinia carotovora*, and *Ralstonia salanceanum*) at a concentration of 10–100 ppm. None of them showed any activity.

EXPERIMENTAL

SCHEME 5

All melting points were uncorrected and performed in an open capillary melting point apparatus. Microanalyses were performed by Microanalysis Unit, Faculty of Science, Cairo University, Egypt and Microanalysis Unit, Central Laboratory, Tanta University, Egypt. IR spectra were recorded with a Perkin-Elmer 1720 spectrometer. NMR spectra were recorded on a Bruker AC 250 FT NMR spectrometer at 250 MHz for $^1{\rm H}$ and 62.9 MHz for $^{13}{\rm C}$, on a Varian UNITY 500 NMR spectrometer at 500 MHz for $^1{\rm H}$ or 125.7 MHz for $^{13}{\rm C}$, and on a Bruker 200 MHz and Bruker 90 MHz spectrometer using TMS as an internal standard DMSO as a solvent. Chemical shifts (δ) are reported in parts per million (ppm), and signals are expressed as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) or br (broad). Mass spectra were recorded using electron ionization on a Varian Mat 311A spectrometer and using fast atom bombardment on a kratos MS 50 spectrometer. Silica gel

(0.040–0.063 mm) was used for the column chromatography and was purchased from Merck.

The Synthesis of 3-Amino-6,8-dibromo-2-thioxo-2,3-dihydro-1*H*-quinazolin-4-one (5)

A mixture of compound 4 (10 g, 0.03 mol), ¹³ sodium hydroxide (1.2 g, 0.03 mol), and carbon disulphide (0.7 mL, 0.03 mol) in ethanol (120 mL) was refluxed for 15 h (TLC). The solvent was distilled off under reduced pressure, and water was added to the residue (50 mL). The precipitate was filtered off, washed with cold water (100 mL), and neutralized with dil. HCl (1:1). The formed precipitate was filtered off, washed with water (100 mL), and recrystallized from ethanol to afford compound **5**. Yield 5 g (51%); m.p. 260–262°C; **IR** (KBr) v = 1610 (C–O), 3263 (NH₂, sym.), 3317 (NH₂, antisym.) cm⁻¹; ¹H NMR (DMSO-d₆) $\delta = 6.55$ (s, 2H, NH₂), 7.68 (s, 1H, H-7), 7.70 (s, 1H, H-5), 14.52 (s, 1H, NH); ¹³C NMR (DMSO- d_6) $\delta = 105.87$, 106.38, 110.01, 128.73, 137.08, $142.82 (C_{arom.}), 158.54 (C=O), 176.08 (CS) ppm; MS (EI) m/z = 349 (M^+, MS)$ $C_8H_5Br_2N_3OS$, 45%), (⁷⁹Br, ⁷⁹Br)], 350 [12%, (⁷⁹Br, ⁸⁰Br; ⁸⁰Br, ⁷⁹Br)], $351\ [92\%,\ M^{+}C_{12}H_{11}Br_{2}N_{3}O_{3}S\ (^{80}Br,\ ^{80}Br;\ ^{79}Br,\ ^{81}Br;\ ^{81}Br,\ ^{79}Br)],\ 352R^{-1}R^{-$ [13%,(80Br, 81Br; 81Br, 80Br)], 353 [46%, (81Br, 81Br)]. 278 (M⁺ beak 100%). Anal. calcd. for C₈H₅Br₂N₃OS: C, 27.37; H, 1.44; N, 11.97. Found: C, 27.09; H, 1.23; N, 12.00.

The Reaction of Compound 5 with Ethyl Chloroformate and/or Ethyl Chloroacetate

Compound 5 (1 g, 0.02 mol) was fused in ethyl chloroformate and/or ethyl chloroacetate for 4 h (TLC). The excess of the reagent was evaporated to dryness under vaccum. The solid residue was crystallized from petroleum ether $(80-100^{\circ}\text{C})$ to give compounds 6 and 7, respectively.

Thiocarbonic Acid S-(3-amino-6,8-dibromo-4-oxo-3,4-dihydro-quinazolin-2-yl) Ester O-ethyl Ester (6)

Yield 1 g (87%); m.p. 190–192°C; **IR** (KBr) υ = 1626 (cyclic, C=O), 1765 (COO), 2987 (CH), 3356 (NH₂, sym), 3459 (NH₂, antisym) cm⁻¹; ¹H NMR (DMSO- d_6) δ = 1.54 (t, 3H, CH₃), 4.65 (q, 2H, CH₂), 6.11 (s, 2H, NH₂), 7.75 (s, 1H, H-7), 7.87 (s, 1H, H-5); ¹³C NMR (CDCl₃) δ = 14.11 (CH₃), 65.68 (CH₂), 129.88 (C=N), 138.83 (cyclic, C=O), 143.07 (COO), 162.21 (NCN) ppm. Anal. calcd. for C₁₁H₉Br₂N₃O₃S: C, 31.23; H, 2.14; N, 9.93. Found: C, 31.30; H, 2.04; N, 9.89.

(3-Amino-6,8-dibromo-4-oxo-3,4-dihydroquinazolin-2-ylsulfan-yl)acetic Acid Ethyl Ester (7)

Yield 1.2 g (89%); m.p. 120–122°C; **IR** (KBr) υ =1615 (C=O), 1730 (COO), 2924 (CH), 3329 (NH₂, sym), 3452 (NH₂, antisym) cm⁻¹; ¹H NMR (DMSO- d_6) δ = 1.20 (t, 3H, CH₃), 4.21 (q, 2H, CH₂), 4.36 (s, 2H, SCH₂), 6.86 (s, 2H, NH₂), 7.80 (s, 1H, H-7), 7.84 (s, 1H, H-5); ¹³C NMR (DMSO- d_6) δ = 13.91 (CH₃), 33.70 (CH₂CH₃), 61.55 (SCH₂), 105.74, 106.56, 109.91, 128.95, 136.96, 143.17 (C_{arom.}), 162.21 (C=N), 163.42 (C=O), 167.66 (COO) ppm; **MS** (EI) m/z = 435 [M⁺C₁₂H₁₁Br₂N₃O₃S, 71%, (⁷⁹Br, ⁷⁹Br)], 436 [14%, (⁷⁹Br, ⁸⁰Br; ⁸⁰Br, ⁷⁹Br)], 437 [100%, (⁸⁰Br, ⁸⁰Br; ⁷⁹Br, ⁸¹Br; ⁸¹Br, ⁷⁹Br)], 438 [23%, (⁸⁰Br, ⁸¹Br; ⁸¹Br, ⁸⁰Br)], 439 [70%, (⁸¹Br, ⁸¹Br)]. Anal. calcd. for C₁₂H₁₁Br₂N₃O₃S: C, 32.97; H, 2.54; N, 9.61. Found: C, 32.92; H, 2.34; N, 9.70.

2-(3-Amino-6,8-dibromo-3,4-dihydroquinazolin-2-ylsulfanyl)butyric Acid Ethyl Ester (8)

Compound **5** (1.5 g, 0.004 mol) was dissolved in sodium ethoxide (0.2 g of Na in 20 mL of absolute ethanol), and ethyl 2-bromobutyrate (2 mL) was added. The reaction mixture was stirred at r.t. for 10 h (TLC). The solid product was filtered off, washed with dis. water (50 mL), recrystallized from methanol, filtered, and dried to afford 8. Yield 1.1 g (93%); m.p. 120–122°C; **IR** (KBr) $\upsilon=1617$ (C=O), 1742 (COO), 2937 (CH), 3359 (NH₂, sym), 3430 (NH₂, antisym) cm⁻¹; ¹H NMR (DMSO- d_6) $\delta=1.26$ (t, 3H, C H_3 CH₂CH), 1.332 (t, 3H, CH₃CH₂O), 4.16 (m, 2H, C H_2 CH), 4.27 (q, 2H, OC H_2 CH₃), 6.319 (s, 2H, NH₂), 7.69 (s, 1H, H-7), 7.72 (s, 1H, H-5); ¹³C NMR (DMSO- d_6) $\delta=13.90$ (CH₃CH₂CH), 14.76 (CH₃CH₂O), 64.16 (CH₂CH), 84.92 (CH₃CH₂O), 105 (CH), 109.77, 118.55, 129.93, 135.75 and 144.82 (C_{arom}) ppm; **MS** (EI) m/z=466 (M⁺¹ C₁₄H₁₅Br₂N₃O₃S; C, 36.15; H, 11.25; N, 9.03. Found: C, 36.01; H, 11.37; N, 8.89.

3-Amino-6,8-dibromo-4-oxo-3,4-dihydroquinazolin-2-ylsulfan-yl)acetyl Chloride (9)

To a solution of compound **5** (1.5 g, 0.004 mol) in dioxane (15 mL) was added chloroacetyl chloride (0.3 mL, 0.004 mol), followed by the addition of few drops of triethylamine. The reaction mixture was stirred at 5°C for 5 h (TLC). The solid product that formed was filtered off, recrystallized from petroleum ether (80–100°C), and dried to give **9**. Yield 1.6 g (94%); m.p. 170–172°C; **IR** (KBr) $\upsilon = 1614$ (cyclic, C=O), 1718 (COCl), 2924 (CH), 3464 (NH₂) cm⁻¹; ¹H NMR (DMSO- d_6) $\delta = 4.27$ (s,

2H, CH₂), 6.89 (s, 2H, NH₂), 7.84 (s, 1H, H-7), 7.87 (s, 1H, H-5); $^{13}\mathrm{C}$ NMR (DMSO- d_6) $\delta=34.14$ (CH₂), 105.78, 106.65, 109.91, 128.99, 136.96, 143.18 (C_{arom}), 162.55 (C=N), 163.36 (cyclic, C=O), 168.89 (COCl) ppm. Anal. calcd. for $C_{10}H_6Br_2ClN_3O_2S$: C, 28.10; H, 1.41; N, 9.83. Found: C, 28.50; H, 1.60; N, 9.68.

3-Amino-6,8-dibromo-2-(2-oxo-2-phenylethylsulfanyl)-3*H*-quinazolin-4-one (11)

To a solution of compound **5** (2.3 g, 0.006 mol) in anhydrous dimethylformamide (15 mL) was added anhydrous potassium carbonate (0.8 g, 0.006 mol) followed by the addition of phenacyl chloride (0.9 g, 0.006 mol). The reaction mixture was stirred at r.t. for 8 h (TLC). The solid product that formed was filtered off and recrystallized from methanol to afford **11**. Yield 1.8 g (64%); m.p. 200–202°C; **IR** (KBr) v = 1613 (cyclic, C=O), 1728 (C=O C₆H₅), 3338 (NH₂, sym), 3460 (NH₂, antisym) cm⁻¹; ¹H NMR (DMSO- d_6) $\delta = 5.35$ (s, 2H, CH₂CO), 6.62 (s, 2H, NH₂), 7.65–7.82 (m, 5H, C₆H₅), 8.12 (s, 1H, H-7), 8.14 (s, 1H, H-5); ¹³C NMR (DMSO- d_6) $\delta = 40.39$ (CH₂), 105.75, 106.61, 109.89, 128.38, 128.83, 128.96,133.96, 134.92, 136.94 and 143.16 (C_{arom.}), 162.57 (C=N), 163.36 (cyclic, C=O), 192.65 (COC₆H₅) ppm. Anal. calcd. for C₆H₁₁Br₂N₃O₂S: C, 40.96; H, 2.36; N, 8.96. Found: C, 40.90; H, 2.46; N, 8.77.

5,7-Dibromo-3-phenyl-3*H*-[1,2,4]triazolo[5,1-*b*]quinazoline-2,9-dione (12)

To a solution of compound **5** (1g, 0.003 mol) in anhydrous pyridine (25 mL) was added phenyl isocyanate (0.3 mL, 0.003 mol). The reaction mixture was refluxed for 6 h (TLC). The solvent was evaporated to dryness under vacuum, and the residual solid was crystallized from methanol and dried to give **12**. Yield 1.8 g (64%); m.p. 200–202°C; **IR** (KBr) $\upsilon=1598$ (CONH), 1645 (cyclic, C=O), 2920 (CH), 3718 (NH₂, sym), 3838 (NH₂, antisym) cm⁻¹; ¹H NMR (DMSO- d_6) $\delta=6.43$ –7.04 (m, 5H, H_{arom.}), 7.80 (s, 1H, H-5), 8.01 (s, 1H, H-7), 10.42 (s, 1H, NH); ¹³C NMR (DMSO- d_6) $\delta=112.3$, 129.4, 116.4 and 143.01 (Ph, C_{arom}), 163.33(C=N), 168.45 (cyclic, C=O), 171.23 (CONH) ppm. Anal. calcd. for C₁₅H₈Br₂N₄O₂: C, 41.32; H, 1.85; N, 12.85. Found: C, 41.47; H, 1.79; N, 12.77.

3-Amino-6,8-dibromo-2(2',3',4',6'-tetra-O-acetyl- β -D-glucopy-ranosyl)thioxo-2,3-dihydro-1H-quinazolin-4-one (14)

To a solution of compound 5 (1.5 g, 0.004 mol) in dimethylformamide (10 mL) was added a few drops of triethylamine and **ABG** (1.6 g,

0.004 mol). The reaction mixture was stirred at r.t. for 3 h (TLC). The solvent was evaporated to dryness under vacuum. The solid residue was poured onto cold water, and the solid formed was filtered off, washed with cold water, dried, and recrystallized from ethanol to afford 14. Yield 0.7 g (26%); m.p. 170–172 °C; **IR** (KBr) v = 1617 (cyclic, C=O), 1748 (C=O, acetyl), 3385 (NH₂, sym), 347 (NH₂, antisym) cm⁻¹; ¹H NMR (DMSO- d_6) $\delta = 1.95-2.12$ (s, 12H, 4CH₃), 3.35 (s, 2H, C'6H₂), 4.55-5.96 (H, sugar moiety), 6.92 (s, 2H, NH₂), 7.85 (s, 1H, H-7), 7.92 (s, 1H, H-5); ¹³C NMR (DMSO- d_6) $\delta = 20.14$ (CH₃, C'6), 20.19(CH₃, C'4), 20.23(CH₃, C'2), 20.28 (CH₃, C'3), 61.65, 67.65, 70.20, 72.47, 74.66, 81.01 (C'6,C'4,C'2, C'3, C'5, C'1_{anomeric,respectively}), 105.81, 106.43, 109.61, 128.99, 137.30, 142.69 (C_{arom}), 158.58 (C=N), 163.98 (C=O, cyclic), 169.21, 169.46, 169.72, 169.73 (C=O, acetyl) ppm; MS (EI) $m/z = 681 \text{ (M}^+, C_{22}H_{23}Br_2N_3O_{10}S, 75\%), 603 (100\%); Anal. calcd. for$ C₂₃H₂₃Br₂N₃O₁₀S: C, 38.78; H, 3.40; N, 6.17. Found: C, 39.02; H, 3.52; N, 6.49.

The Deblocking of 14

Compound 14 was dissolved in methanol (1.5 g, 0.01 mL), and two drops of sodium methoxide solution (0.001 N) were added. The reaction mixture was left at r.t. for 4 h (TLC). The solvent was evaporated under vacuum, and the residual solid was dissolved in water neutralized with dill. HCl. The solid formed was filtered off, washed with water, dried, and recrystallized from ethanol to give the starting material $\bf 5$. Yield 1.2 g (92%); m.p. 260–262°C. M.p. and mixed m.p. of the product and an authentic sample of $\bf 5$ gave no depression.

3-Amino-6,8-dibromo-2-methylthio-3H-quinazolin-4-one (16)

Compound **5** (2 g, 0.0056 mol) was dissolved in methanol (20 mL) and sodium hydroxide (0.3 g). Methyl iodide (0.03 mL, 0.0056 mol) was added, and the reaction mixture was stirred at r.t. for 4 h (TLC). The formed solid product was filtered off, recrystallized from methanol, filtered, and dried to afford **16**. Yield 3.5 g (58%); m.p. 178–180°C; **IR** (KBr) $\upsilon = 1619$ (cyclic, C=O), 2925 (CH), 3338 (NH₂, sym), 3454 (NH₂, antisym) cm⁻¹; ¹H NMR (DMSO- d_6) $\delta = 2.80$ (s, 3H, CH₃), 6.89 (s, 2H, NH₂), 7.82 (s, 1H, H-7), 7.85 (s, 1H, H-5); ¹³C NMR (DMSO- d_6) $\delta = 14.19$ (CH₃), 105.73, 106.82, 109.85, 128.91, 136.81, 143.12 (C_{arom.}), 163.26 (C=N), 163.97 (cyclic, C=O) ppm; **MS** (EI) m/z = 363 [C₉H₇Br₂N₃OS, 50%, (⁷⁹Br, ⁷⁹Br)], 364 [6.3%, (⁷⁹Br, ⁸⁰Br; ⁸⁰Br, ⁷⁹Br)], 365 [100%, (⁸⁰Br, ⁸⁰Br; ⁸¹Br, ⁸¹Br; ⁸¹Br, ⁸¹Br, ⁸³Br)], 366 [50%,

 $(^{81}Br, ^{81}Br)$. Anal. calcd. for $C_9H_7Br_2N_3OS$: C, 29.61; H, 1.93; N, 11.51. Found: C, 29.52; H, 2.00; N, 11.70.

2-Amino-3,5-dibromobenzoicaid Hydrazide (4)

A mixture of compound **16** (2 g, 0.01 mol) and hydrazine hydrate (0.5 mL, 0.01 mol) in ethanol (20 mL) was refluxed for 4 h (TLC) and then allowed to cool. The solid product was collected and recrystallized from ethanol to afford **4**. Yield 1.3 g (68%), m.p. $176-178^{\circ}$ C. ¹³

The Synthesis of 3,5-Dibromo-2-aryl Aminobenzoic Acid Hydrazide (18a-c)

A mixture of compound **4** (1.9 g, 0.01 mol) with the aromatic aldehydes, namely benzaldehyde, 4-methoxybenzaldehyde, and 2-nitrobenzaldehyde (0.01), in ethanol (20 mL) and few drops of glacial acetic acid, was added. The reaction mixture was refluxed in ethanol (20 mL) for 1–2.5 h (TLC). The solid product separated was filtered off and recrystallized from ethanol to afford (**18a–c**), respectively.

2-Amino(benzylideneamino)-3,5-dibromobenzoic Acid Hydrazide (18a)

Yield 1.1 g (83%); m.p. 218-220°C; **IR** (KBr) $\upsilon = 1632$ (C=O), 2923 (CH), 3220 (NH), 3397 (NH₂, sym), 3439 (NH₂, antisym) cm⁻¹; ¹H NMR (DMSO- d_6) $\delta = 6.55$ (s, 2H, NH₂), 7.46-7.80 (m, 5H, H_{arom.}), 8.40 (s, 1H, CH.), 11.86 (s, 1H, NH); ¹³C NMR (DMSO- d_6) $\delta = 105.14$ (CH.), 127.04, 128.78, 130.12, 134.07, 136.81, 145.57 (C_{arom.}), 152.14(C=N), 168.17 (C=O) ppm. Anal. calcd. for C₁₄H₁₁Br₂N₄O₃: C, 42.35; H, 2.79; N, 10.58. Found: C, 42.58; H, 2.76; N, 10.83.

3,5-Dibromo-2-amino[(4-methoxybenzylidene)amino]benzoic Acid Hydrazide (18b)

Yield 1 g (71%); m.p. 210–212°C; **IR** (KBr) υ = 1618 (C=O, cyclic), 2928 (CH), 3225 (NH), 3362 (NH₂, sym), 3498 (NH₂, antisym) cm⁻¹; ¹H NMR (DMSO- d_6) δ = 3.73 (s, 3H, CH₃), 6.46 (s, 2H, NH₂), 6.81–7.84 (m, 5H, H_{arom.}), 8.13 (s, 1H, N=CH.), 11.15 (s, 1H, NH); ¹³C NMR (DMSO- d_6) δ = 57.29 (OCH₃₎, 126.98, 127.12, 128.33, 129.45, 130.61, 131.72, 132.01, 132.98 (C_{arom}), 154.71 (C=N), 164.32 (C=O), 170.01 (C-OCH ₃) ppm. Anal. calcd. for C₁₅H₁₃Br₂N₃O₂: C, 42.18; H, 3.07; N, 9.84. Found: C, 42.34; H, 2.89; N, 9.70.

3,5-Dibromo-2-amino[(2-nitrobenzylidene)amino]benzoic Acid Hydrazide (18c)

Yield 1.7g (71%); m.p. 286–288°C; **IR** (KBr) υ = 1654 (C=O, cyclic), 2849 (CH), 3185 (NH), 3339 (NH₂, sym), 3417 (NH₂, antisym) cm⁻¹; ¹H NMR (DMSO- d_6) δ = 6.82 (s, 2H, NH₂), 6.61–8.24 (m, 5H, H_{arom.}), 8.12 (s, 1H, N=CH.), 11.32 (s, 1H, NH); ¹³C NMR (DMSO- d_6) δ = 112.12, 115.42, 123.73, 124.51, 130.43, 139.72, 147.94, 148.01, (C_{arom.}), 156.62 (C=N), 166.53 (C=O) ppm. Anal. calcd. for C₁₄H₁₀Br₂N₄O₃: C, 38.04; H, 2.28; N, 12.67. Found: C, 37.89; H, 2.40; N, 12.79.

3-(Benzylideneamino)-6,8-dibromo-2-methyl-3*H*-quinazolin-4-one (19)

Compound **18a** (1 g, 0.002 mol) was refluxed with acetic anhydride (15 mL) for 4 h (TLC). The excess of solvent was evaporated under vacuum to dryness. The solid product that formed was crystallized from ethanol and dried to give **19**. Yield 0.8 g (80%); m.p. 218–220°C; **IR** (KBr) v = 1711 (C=O, cyclic), 2922 (CH) cm⁻¹; ¹H NMR (DMSO- d_6) $\delta = 2.45$ (s, 3H, CH₃), 7.45–7.60 (m, 6H, H_{arom} + N=CH), 8.33–8.45 (s, 2H, H_{arom}); ¹³C NMR (DMSO- d_6) $\delta = 20.77$ (CH₃), 67.36 (CH), 118.86–143.93 (C_{arom}), 157.74 (C=N), 166.01 (C=O) ppm. Anal. calcd. for C₁₆H₁₁Br₂N₃O: C, 45.64; H, 2.63; N, 9.98. Found: C, 45.46; H, 2.88; N, 8.36.

The Synthesis of Aldehydosugars (2-Amino-3, 5-dibromobenzoyl) Hydrazones (20a-f)

A solution of the respective sugar pentoses and/or hexoses (0.01 mol) in water (5 mL) was refluxed with a solution of (2-amino-3,5-dibromobenzoyl)hydarzone (4) (2 g, 0.01 mol) in ethanol (20 mL) containing 1 mL of glacial acetic acid for 5 h (TLC). The solid product that separated on cooling was collected and recrystallized from ethanol/water (1:1) to give (20a-f).

Aldehydo-*L*-arabinose(2-amino-3,5-dibromobenzoyl)hydrazone (20a)

Yield 2.5 g (87%); m.p. 204–206°C; **IR** (KBr) υ = 1615 (C=N), 1675 (C=O), 3180 (NH), 3435 (OH) cm⁻¹; ¹H NMR (DMSO- d_6) δ = 3.62–4.35 (m, 5H, arabinosyl protons), 6.01 (s, 2H, NH₂), 7.5 (s, 1H, CH=N-), 7.12–7.731 (m, 2H, H_{arom}), 11.02 (s, 1H, NH); ¹³C NMR (DMSO- d_6) δ = 62.11, 65.83, 70.12, 74.03 (arabinosyl moiety), 109.82, 115.22,

122.13, 133.76, 136.92, 145.19 (C_{arom}), 159.20 (C=N), 168.02 (C=O) ppm; **MS** (Maldi) m/z = 462 [48%, $M^+ + Na$, (^{79}Br , ^{79}Br)], 464 [100%, $M^+ + Na$, (^{80}Br , ^{80}Br or ^{79}Br , ^{81}Br)], 466 [48%, $M^+ + Na$, (^{81}Br , ^{81}Br)]. Anal. calcd. for $C_{12}H_{15}Br_2N_3O_5$: C, 32.68; H, 3.43; N, 9.53. Found: C, 32.59; H, 3.38; N, 9.60.

Aldehydo-*D*-ribose(2-amino-3,5-dibromobenzoyl)hydrazone (20b)

Yield 2.1g (75%); m.p. 210–212°C; **IR** (KBr) υ = 1611 (C=N), 1671 (C=O), 3142 (NH), 3450 (OH) cm⁻¹; ¹H NMR (DMSO- d_6) δ = 3.51–5.92 (m, 5H, ribosyl protons), 6.55 (s, 2H, NH₂), 7.31–7.96 (m, 2H, H_{arom}), 10.25 (s, 1H, NH); ¹³C NMR (DMSO- d_6) δ = 62.12, 72.50, 73.41, 74.53 (carbon of ribosyl moiety), 115.42, 120.51, 126.12, 132.97, 138.53, 140.72 (C_{arom}), 154.91 (C=N), 166.02(C=O) ppm. Anal. calcd. for C₁₂H₁₅Br₂N₃O₅: C, 32.68; H, 3.43; N, 9.53. Found: C, 32.60; H, 3.62; N, 9.27.

Aldehydo-*D*-xylose(2-amino-3,5-dibromobenzoyl)hydrazone (20c)

Yield 2.6 g (92%); m.p. 198–200°C; **IR** (KBr) υ = 1613 (C=N), 1670 (C=O), 3185 (NH), 3432 (OH) cm⁻¹; ¹H NMR (DMSO- d_6) δ = 3.32–5.51 (m, 5H, xylosyl protons), 6.59 (s, 2H, NH₂), 7.62–7.83 (m, 2H, H_{arom}), 10.35 (s, 1H, NH); ¹³C NMR (DMSO- d_6) δ = 62.39, 66.76, 69.70, 71.32, 76.50 (carbon of xylosyl moiety), 105.12, 110.06, 116.08, 130.07, 136.52, 145.25 (C_{arom}), 165.92 (C=O) ppm. Anal. calcd. for C₁₂H₁₅Br₂N₃O₅: C, 32.68; H, 3.43; N, 9.53. Found: C, 32.82; H, 3.53; N, 9.05.

Aldehydo-*D*-glucose(2-amino-3,5-dibromobenzoyl)hydrazone (20d)

Yield 2.5 g (85%); m.p. 210–212°C; **IR** (KBr) $\upsilon=1613$ (C=N), 1673 (C=O), 3182 (NH), 3433 (OH) cm⁻¹; ¹H NMR (DMSO- d_6) $\delta=3.60-5.67$ (m, 6H, glucosyl protons), 6.59 (s, 2H, NH₂), 7.56–7.85 (m, 2H, H_{arom} and CH=N), 10.60 (s, 1H, =N-H); ¹³C NMR (DMSO- d_6) $\delta=60.73, 71.46, 76.67, 77.87, 87.72, 90.89 (carbon of glucosyl moiety), 105.24, 110.03, 116.52, 129.69, 136.40, 145.06 (C_{arom}), 157.42 (C=N), 165.64 (C=O) ppm. Anal. calcd. for C₁₃H₁₇Br₂N₃O₆: C, 33.14; H, 3.64; N, 8.92. Found: C, 33.30; H, 3.72; N, 9.00.$

Aldehydo-*D*-galactose(2-amino-3,5-dibromobenzoyl)hydra-zone (20e)

Yield 2.8 g (89%) cm⁻¹; m.p. 214–216°C; **IR** (KBr) υ = 1618 (C=N), 1679 (C=O), 3188 (NH), 3421 (OH); ¹H NMR (DMSO- d_6) δ = 3.65–6.10 (m, 6H, galactosyl protons), 6.53 (s, 2H, NH₂), 7.75–7.99 (m, 2H, H_{arom} and CH=N), 11.66 (s, 1H, NHC=O); ¹³C NMR (DMSO- d_6) δ = 60.40, 66.02, 68.17, 68.90, 76.44 (C-6′, C-5′, C-4′, C-3′ and C-2 carbon of galactosyl moiety), 105.18, 110.01, 116.20, 130.17, 136.47, 145.35 (C_{arom}), 154.86 (C=N), 166.01 (C=O) ppm; **MS** (Maldi) m/z = 492 [48%, M⁺+ Na, (⁷⁹Br, ⁷⁹Br)], 494 [100%, M⁺ + Na, (⁸⁰Br, ⁸⁰Br or ⁷⁹Br, ⁸¹Br)], 496 [48%, M⁺+ Na, (⁸¹Br, ⁸¹Br)]. Anal. calcd. for C₁₃H₁₇Br₂N₃O₆: C, 33.14; H, 3.64; N, 8.92. Found: C, 33.12; H, 3.56; N, 8.75.

Aldehydo-*D*-mannose(2-amino-3,5-dibromobenzoyl)hydrazone (20f)

Yield 1.3 g (46%) cm⁻¹; m.p. 197–199°C; **IR** (KBr) υ = 1642 (C=N), 1674 (C=O), 3110 (NH), 3476 (OH) cm⁻¹; ¹H NMR (DMSO- d_6) δ = 3.54–5.62 (m, 6H, mannose protons), 6.54 (s, 2H, NH₂), 7.15–7.97 (m, 2H, H_{arom} and CH=N), 10.55 (s, 1H, NHC=O); ¹³C NMR (DMSO- d_6) δ =62.87, 64.10, 68.17, 68.97, 70.40 (C-6′, C-5′, C-4′, C-3′ and C-2′ (carbon of mannose moiety), 106.78, 107.38, 111.73, 130.51, 135.23, 143.41 (C_{arom}), 157.61 (C=N), 167.21(C=O) ppm. Anal. calcd. for C₁₃H₁₇Br₂N₃O₆: C, 33.14; H, 3.64; N, 8.92. Found: C, 32.99; H, 3.72; N, 9.03.

2',3',4',5-Tetra-O-acetylaldehydo-*L*-arabinose[1-acetyl-1-(*N*-acetylamino)-3,5-dibromobenzoyl]hydrazone (21a)

Yield 1.1 g (78%); m.p. 80–82°C; **IR** (KBr) υ = 1645(C=N), 1667 (C=O, cyclic), 1763 (C=O), 2855 (CH), 3348 (NH₂, sym), 3435 (NH₂, antisym) cm⁻¹; ¹H NMR (DMSO- d_6) δ = 1.89, 1.91, 1.94, 2.02, 2.05 (5s, 15H, 5CH₃CO), 2.28 (s, 2H, CH₂OAc), 5.28 (m, 1H, C'-5), 5.41 (d, 1H, J = 9.57 Hz, C'-4), 5.44 (d, 1H, J = 8.22 Hz, C'-3), 5.61 (m, 1H, C'-2), 6.34 (m, 1H, C'-1), 6.57 (s, 2H, NH₂), 7.15-7.97 (m, 2H, H_{arom}); ¹³C NMR (DMSO- d_6) δ = 20.38, 20.43, 20.50, 21.43 (4 OCH₃CO), 22.20 (NCH₃CO), 62.48, 67. 55, 68.55, 68.88, 87.55 (C'-5, C'-4, C'-3, C'-2, C'-1), 106.51, 108.07, 109.61, 129.48, 138.07, 148.46 (C_{arom}), 153.85 (C=N), 169.05 (C=O, base), 169.24, 169.40, 169.92 (4C=O, acetyl), 170.01 (NCH₃C=O) ppm. Anal. Calcd. for C₂₂H₂₅Br₂N₃O₁₀: C, 40.57; H, 3.87; N, 6.45. Found: C, 40.72; H, 3.91; N, 6.60.

2',3',4',5-Tetra-*O*-acetylaldehydo-*D*-ribose[1-acetyl-1-(*N*-acetylamino)-3,5-dibromobenzoyl]hydrazone (21b)

Yield 0.8 g (57%); m.p. 92–94°C; **IR** (KBr) υ = 1657(C=N), 1697 (C=O, cyclic), 1775 (C=O), 2840 (CH), 3330 (NH₂ sym), 3425 (NH₂, antisym) cm⁻¹; ¹H NMR (DMSO- d_6) δ = 1.75, 1.83, 1.98, 2.12, 2.20 (5s, 15H, 5CH₃CO), 2.56 (s, 2H, CH₂OAc), 5.11 (m, 1H, C'-5), 5.44 (d, 1H, J= 9.55 Hz, C'-4), 5.48 (d, 1H, J= 8.51 Hz, C'-3), 5.54 (m, 1H, C'-2), 6.24 (m, 1H, C'-1), 6.35 (s, 2H, NH₂), 7.41–7.95 (m, 2H, H_{arom}); ¹³C NMR (DMSO- d_6) δ = 20.23, 20.42, 20.53, 20.61 (4 OCH₃CO), 21.75 (NCH₃CO), 68.24, 68. 53, 71.46, 72.56, 78.42 (C'-5, C'-4, C'-3, C'-2, C'-1), 110.16, 115.34, 119.49, 121.21, 138.47, 144.58 (C_{arom}), 165.80 (C=O, cyclic), 169.52 (5C=O) ppm. Anal. Calcd. for C₂₂H₂₅Br₂N₃O₁₀: C, 40.57; H, 3.87; N, 6.45. Found: C, 40.68; H, 4.16; N, 6.15.

2',3',4',5-Tetra-*O*-acetylaldehydo-*D*-xylose [1-acetyl-1-(*N*-acetylamino)-3,5-dibromobenzoyl]hydrazone (21c)

Yield 1 g (71%); m.p. 90–92°C; **IR** (KBr): υ = 1668 (C=N), 1686 (C=O, cyclic), 1779 (C=O), 2886 (CH), 3335 (NH₂, sym), 3421 (NH₂, antisym) cm⁻¹; ¹H NMR (DMSO- d_6) δ = 1.73, 1.89, 1.97, 2.15, 2.25 (5s, 15H, 5CH₃CO), 2.59 (s, 2H, CH₂OAc), 5.15 (m, 1H, C'-5), 5.65 (d, 1H, J = 9.52 Hz, C'-4), 5.45 (d, 1H, J = 8.50 Hz, C'-3), 5.50 (m, 1H, C'-2), 6.30 (m, 1H, C'-1), 6.37 (s, 2H, NH₂), 7.55–7.99 (m, 2H, H_{arom}); ¹³C NMR (DMSO- d_6) δ = 20.28, 20.40, 20.61, 20.65 (4 OCH₃CO), 20.81 (NCH₃CO), 63.22, 67.17, 68.02, 73.27, 80.13 (C'-5, C'-4, C'-3, C'-2, C'-1), 104.99, 110.05, 114.98, 128.22, 130.61, 137. 32 (C_{arom}), 145.48 (C=N), 166.59 (C=O, cyclic), 169.03, 169.48 (4C=O), 172.91(NCH₃CO) ppm. Anal. calcd. for C₂₂H₂₅Br₂N₃O₁₀: C, 40.57; H, 3.87; N, 6.45. Found: C, 40.50; H, 3.80; N, 6.58.

2',3',4',5',6-Penta-*O*-acetylaldehydo-*D*-glucose[1-acetyl-1-(*N*-acetylamino)-3,5-dibromobenzoyl]hydrazone (21d)

Yield 0.8 g (57%); m.p. 198–200°C; **IR** (KBr) υ = 1671 (C=N), 1695 (C=O, cyclic), 1770 (C=O), 2860 (CH), 3340 (NH₂, sym), 3432 (NH₂, antisym) cm⁻¹; ¹H NMR (DMSO- d_6) δ = 1.75, 1.90, 1.99, 2.20, 2.28, 2.51 (5s, 15H, 5CH₃CO + NAc), 2.90 (s, 2H, CH₂OAc), 5.11 (m, 1H, C'-5), 5.75 (d, 1H, J = 9.64 Hz, C'-4), 5.55 (d, 1H, J = 9.12 Hz, C'-3), 5.53 (m, 1H, C'-2), 6.35 (m, 1H, C'-1), 6.53 (s, 2H, NH₂), 7.62–7.96 (m, 2H, H_{arom}); ¹³C NMR (DMSO- d_6) δ = 20.20, 20.33, 20.45, 20.52 (5 OCH₃CO), 20.88 (NCH₃CO), 62.06, 67. 48, 72.35, 73.54, 79.40, 79.43 (C'-6, C'-5, C'-4, C'-3, C'-2, C'-1), 105.00, 110.08, 115.03, 130.69, 137.38, 145.46 (C_{arom}),

166.77 (C=O, cyclic), 169.427, 169.44 (4C=O), 172.73 (NCH₃CO) ppm; **MS** (Maldi) m/z = 722 [100%, M⁺-2, (⁷⁹Br, ⁷⁹Br)], 747 [15%, M⁺ +Na, (⁸⁰Br, ⁸⁰Br or ⁷⁹Br, ⁸¹Br). Anal. calcd. for C₂₅H₂₉Br₂N₃O₁₂: C, 41.61; H, 4.04; N, 5.81. Found: C, 41.46; H, 3.78; N, 6.03.

2',3',4',5',6-Penta-O-acetylaldehydo-*D*-galactose[1-acetyl-1-(*N*-acetylamino)-3,5-dibromobenzoyl]hydrazone (21e)

Yield 0.9 g (64%); m.p. 202–204°C; **IR** (KBr) $\upsilon = 1682$ (C=N), 1676 (C=O, cyclic), 1778 (C=O), 2870 (CH), 3323 (NH₂, sym), 3411 (NH₂, antisym) cm⁻¹; ¹H NMR (DMSO- d_6) $\delta = 1.70$, 1.85, 1.96, 2.10, 2.24, 2.95 (5s, 15H, 5CH₃CO + NAc), 2.54 (s, 2H, CH₂OAc), 5.13 (m, 1H, C'-5), 5.70 (d, 1H, J = 9.51 Hz, C'-4), 5.51 (d, 1H, J = 9.12 Hz, C'-3), 5.56 (m, 1H, C'-2), 6.44 (m, 1H, C'-1), 6.68 (s, 2H, NH₂), 7.80–8.20 (m, 2H, H_{arom}); ¹³C NMR (DMSO- d_6) $\delta = 19.99$, 20.37, 20.59, 20.88 (4 OCH₃CO), 21.23 (NCH₃CO), 61.96, 67.10, 65.88, 68.19, 87.05, 89.24 (C'-6, C'-5, C'-4, C'-3, C'-2, C'-1), 105.46, 106.84, 109.81, 128.89, 137.00, 143.34 (C_{arom}), 164.46 (C=O, cyclic), 169.92 (C=O) ppm; **MS** (Maldi) m/z = 746 [100 %, M+ Na, (⁷⁹Br, ⁸⁰Br)], 747 [59 %, M+ Na, (⁸⁰Br, ⁸⁰Br or ⁷⁹Br, ⁸¹Br)]. Anal. calcd. for C₂₅H₂₉Br₂N₃O₁₂: C, 41.61; H, 4.04; N, 5.81. Found: C, 41.70; H, 4.00; N, 6.01.

2',3',4',5',6-Penta-*O*-acetylaldehydo-*D*-manose[1-acetyl-1-(*N*-acetylamino)-3,5-dibromobenzoyl]hydrazone (21f)

Yield 1.1 g (78%); m.p. 182–184°C; **IR** (KBr) υ = 1670 (C=N), 1672 (C=O, cyclic), 1776 (C=O), 2884 (CH), 3320 (NH₂, sym), 3418 (NH₂, antisym) cm⁻¹; ¹H NMR (DMSO- d_6) δ = 1.81, 1.84, 1.82, 2.15, 2.28, 2.92 (5s, 15H, 5CH₃CO+NAc), 2.44 (s, 2H, CH₂OAc), 5.10 (m, 1H, C'-5), 5.69 (d, 1H, J= 9.55 Hz, C'-4), 5.59 (d, 1H, J= 9.12 Hz, C'-3), 5.61 (m, 1H, C'-2), 6.74(m, 1H, C'-1), 6.82 (s, 2H, NH₂), 7.51-8.11 (m, 2H, H_{arom}); ¹³C NMR (DMSO- d_6) δ = 22.43, 22.35, 22.41, 23.01, 23.15 (5 OCH₃CO), 24.18 (NCH₃CO), 68.10, 68.35, 71.23, 75.41, 79.11, 79.93 (C'-6, C'-5, C'-4, C'-3, C'-2, C'-1), 117.10, 119.27, 134.35, 139.01, 141.74, 145.86 (C_{arom}), 152.81 (C=N), 165.12 (C=O, cyclic), 170.50 (6C=O) ppm; **MS** (Maldi) m/z = 746 [86%, M+ Na, (⁷⁹Br, ⁸⁰Br)], 747 [57 %, M⁺+ Na, (⁸⁰Br, ⁸⁰Br or ⁷⁹Br, ⁸¹Br)]. Anal. Calcd. for C₂₅H₂₉Br₂N₃O₁₂: C, 41.61; H, 4.04; N, 5.81. Found: C, 41.80; H, 3.90; N, 6.01.

REFERENCES

- V. J. Ram, R. C. Srimal, D. S. Kushwaha, and L. Mishra, J. Prakt. Chem., 323, 629 (1990).
- [2] A. A. Bekhit, N. S. Habbib, and A. El. Bekhit, Boll. Chim. Farm., 140, 297 (2001).
- [3] J. B. Jiang, D. P. Hesson, B. A. Dusak, D. L. Dexter, and G. T. Kang, J. Med. Chem., 33, 1721 (1990).
- [4] S. E. Lopez, M. E. Rosales, E. C. Canelon, A. E. Valverode, R. C. Narvaez, J. E. Charris, F. A. Giannini, R. D. Enriz, M. Carrasco, and S. Zacchino, *Heterocycl. Commun.*, 7, 473 (2000).
- [5] A. O. Farghaly and A. M. Moharram, Boll. Chim. Farm., 138, 280 (1999).
- [6] C. O. Usifoh and G. K. E. Scriba, Arch. Pharm. (Weinheim.), 333, 261 (2000).
- [7] J. Tani, Y. Yamada, T. Oine, T. Ochiai, R. Ishida, and I. Inoue, J. Med. Chem., 22, 5 (1979).
- [8] S. Plescia, G. Daiolone, L. Ceraulo, M. L. Bajardr, and R. Reina, Farmaco ED. Sci., 39, 120 (1984).
- [9] P. Singh, J. Ind. Chem. Soc., 55, 801 (1978).
- [10] T. Ochiai and R. Ishida, Jpn. J. Pharmacol., 31, 491 (1981).
- [11] D. Raffa, G. Daidone, D. Schillaci, B. Maggio, and F. Plescia, Pharmazie., 54, 251 (1999).
- [12] H. Chaplin, J. Chem. Soc., 375, 381 (1938).
- [13] G. Lei, X. Liu, B. Mu, and X. He, Zhongguo Yaowu Huaxue Zazhi, 10, 205 (2000); Chem. Abstr. 134, 252114 (2001).
- [14] E. Zigler, W. Steiger, and T. Kappe, Monatch Helf. Chem., 100, 150 (1969).
- [15] A. A. El-Barbary, A. Z. Abou-El-Ezz, A. A. Abed-Kader, M. El-Daly, and C. Nielsen, Phosphorus, Sulfur, and Silicon, 179, 1497 (2004).
- [16] N. R. El-Brollosy, P. T. Jorgensen, B. Dahan, A.-M. Boel, E. B. Pedersen, and C. Nielsen, J. Med. Chem., 45, 5721 (2002).